
The Web APIs
powering the
Starshot trial 

/u/mglaman  @mglaman@phpc.social  /in/mattglaman  #DrupalCon

Leveraging native
and open features
for a unique trial
experience 

WebAssembly
IndexedDB API
Web Workers API
Web Components

WebAssembly 
PHP… in the browser? 

WebAssembly (Wasm) 
● Defines a portable binary-code format (like

assembly language) 
 

● A compilation target of C/C++, Rust, and Go 
 

● Emscripten allows compiling C code, like the PHP
interpreter, to Wasm 
 

● All browser JavaScript engines support
WebAssembly 
 

● It is an open standard and managed by W3C
Community Group and W3C Working Group 

 

Drupal running in a normal stack 

Drupal running in WebAssembly 

WebAssembly removes the
need for third-party
services to try Drupal. 

WebAssembly &
JavaScript 
● Emscripten provides JavaScript for interacting with

PHP in WebAssembly using ccall 
 

● Enables building “SDKs” for easily calling these
functions and building applications 
 

● Emscripten provides a filesystem API through
JavaScript 
 

● Browser is the web server by “hosting” the files 
 

● Service worker like CGI in sending request to PHP
and returning server side rendered content 

Example invoking Emscripten ccall directly

import PhpBinary from './php-web.mjs';

return new PhpBinary()

.then(({ccall, FS}) => {

 ccall(

 'phpw_run',

 'string',

 ['string'],

 [`<?php echo "Hello, world!";`]

);

})

Example printing “Hello world” using php-wasm wrappers 

const { PhpWeb } = await import('PhpWeb.mjs');

const php = new PhpWeb;

const exitCode = await php.run(

'<?php echo "Hello, world!";'

);

IndexedDB 
Filesystem for Wasm 

IndexedDB 
● IndexedDB, intended for structured data,

including files/blobs 
 

● Emscripten provides a filesystem API through
JavaScript to use IndexedDB 
 

● Files are accessible by the Wasm runtime and
available to PHP 
 

● Drupal codebase is stored on the browser inside
of a IndexedDB store 
 

● IndexedDB is also being used to store cookies are
as well for the user session. 

Web Workers API 
Dedicated workers 
Service workers 

Service worker 
● Service workers run in the background and can intercept

outgoing fetch requests 
 

● Instead of making a “real” request, the request can be
sent to PHP in WebAssembly 
 

● Processes the response from PHP and returns the to the
browser 
 

● Acts like CGI to return data from filesystem or server side
rendered content in PHP  
 

● PHP CGI build doesn’t allow running arbitrary code but
only scripts on the filesystem 

Dedicated worker 
● Allows executing PHP code directly without blocking the

main thread 
 

● Prevents the browser from “locking up” and not
repainting UI changes  
 

● Used for unarchiving Drupal CMS or performing behind
the scenes actions 
 

● Unfortunately each worker is isolated, so the shared
libraries for PHP get requested twice (but response disk
caching should avoid double downloads) 

Web Components 
Custom elements 

Web Components 
● trial-manager web component is used to automatically

start a trial or perform actions on an 
 

● Allows for dynamic interface without using React, Vue,
etc 
 

● Web Components classes allow encapsulating logic and
reacting to attribute changes 
 

● Interacts with the dedicated worker to download and
extract Drupal CMS 

Broadcast channels 

Broadcast channel  
● Only the main window can (easily) send messages to the

service worker 
 

● Used to provide asynchronous communication between
the web component, dedicated worker, and service
worker 
 

● When the service worker is ready, dispatches a message
so the trial manager web component can start 
 

● Web Component tells the service worker to refresh and
recognize new files after the setup 

Try it out! 

